Supplementary Text

The space of enzyme regulation in HeLa cells can be inferred from its intracellular
metabolome

Christian Diener, Felipe Mufioz-Gonzalez, Sergio Encarnacion,
Osbaldo Resendis-Antonio

This document includes:
1. Supplementary Figures S1 to S3
2. Mathematical derivation of the used formalism

3. Rmarkdown protocol to reproduce the results of the paper

Figure S1

A é x4 B 1 C 60000 -
< X o .
! 5% & cell line
o b=
; S T [l HacaT
3 8 A W HeLa
leB= o 40000 -
+ © 58
) 3 S 2
S 2 / 3
2o @ 3
- < g 5]
o g
k! e / 20000
% 3 G5y
5 7/
= /
To o/
& s : /
T T T T T T 2 T T T T T 04
06 04 02 00 02 04 06 ? 02 0.0 02 0.4 06 ! !
SUCL+OGDH, EX_pi, EX_gdp, EX_nadh SUCL+OGDH, PFK, EX_atp, GPX stable unstable

Supplementary Figure S1 - Additional analyses of k-cone spaces. (A) The k-cone reduced by
adding additional constraints obtained from approximate in vivo equilibrium constants. Informa-
tion captured in the reduction is 28.7%. (B) The k-cone constrained by the approximate equilibrium
constants when only selecting reactions that change at least 2-fold. Information captured in the
reduction is 99.9%. Equilibrium constants where obtained from http://equilibrator.weizmann.
ac.il/ assuming a pH of 7.34 and an ionic strength of 0.15 M for all samples. (C) Bars denote
the number of basis vectors in the respective non-reduced k-cone that lead to stable or unstable
steady states for the two used cell lines.

http://equilibrator.weizmann.ac.il/
http://equilibrator.weizmann.ac.il/

Figure S2

o
R =
<
® |
‘C_l — o
§ 2 ©
< Q-
g —
T o ‘E’
o -
Qo
€ <
8 © A °
< o
N
~ 4
o
S A
T T T T T T
-3 2 1 0 1 2 3 0 5 10 15
Theoretical Quantiles X

Supplementary Figure S2 - Metabolite concentrations are log-normal distributed The distribu-
tion of the log-transformed metabolite concentrations was compared to a normal distribution by
quantile-quantile plots and empirical distribution functions. Blue symbols and lines denote the
HaCaT samples and red symbols and lines the HeLa samples. Quantile-quantile plots are shown
on the left and a perfect fit is denoted by the straight lines. Decent agreement is observed, with
some deviations in the tails. The empirical distribution functions are shown on the right, and
cumulative distribution functions for a normal distribution is indicated by the straight lines.

Figure S3

100 - - cell line
e HaCaT
A Hela
m keratinocyte $
50 - = condition
o disease Q
.l e normal i

PC2
o
[
»

-50 -

e
-100 - ° 0

450 -100 -50 0 50
PC1

Supplementary Figure S3 - Mapping of microarray samples to the first two principal compo-
nents. Colors denote condition, and shape denotes cell lines. The samples separate well into non-
cancerous normal samples and cancerous HeLa samples. The total standard deviation contained
in the first two principal components was 17.6%.

Mathematical description of the k-cone
formalism

1 The flux cone

Given the stoichiometric matrix S' and the vector of reaction velocities v .= v(S,) the steady
state condition is given by
S-v=0. (1)

The fact that some reactions might be irreversible enforces positivity constraints on some elements
of v (the irreversible reactions). In order to make the constraints more consistent one often splits
up all reversible reactions into their respective forward and backward reactions. This can be
achieved by a link matrix L which has a block diagonal shape with ones on the diagonal for
irreversible reactions and (1, —1) for reversible reactions. For instance for the simple system

Uy A% Bwith S, = (L) (2)
v 0 1

we can formulate the following transformation to get the irreversible stoichiometric matrix S;,.,:

1 -1 1 1 -1\ (10 0
S””':(O 1 —1):ST€”'L:<0 1)'(0 1 —1)‘ ®)

Using the link matrix L we can now formulate our steady state condition for the irreversible
stoichiometric matrix S;,,. and split fluxes v;;.,

SirrVirr = SpevLivip, = 0. (4)

This system now has a semi-trivial solution Lv;,, which requires irreversible reactions to carry
zero flux and reversible reactions to be in chemical equilibrium, meaning that the respective for-
ward and backward reactions carry the same flux. However, as long as S, is invertible there may

'In this text all lower-case bold letters denote vectors, all upper-case bold letters matrices and all cursive letters
denote scalars. At the same time the multiplictation operator, ”-”, denotes scalar multiplication for scalars, the
dot product for vectors and matrix multiplication for matrices. For conciseness the multiplication operator will
sometimes be omitted.

also be other non-equilibrium solutions for the steady state.

From here on S will always denote the irreversible stoichiometric matrix S, and v the irre-
versible fluxes v;,., yielding the steady state condition

S-v=0whereVi:v; >0 (5)

This defines a solution space which is a pointed cone®. The basis for this space, V, isam X n
matrix called the flux cone where

Vv =Vcifc € R™" :Sv = 0. (6)

2 The k-cone

In the k-cone formalism we assume that, given the metabolite concentrations x, the reaction ve-
locities can be written as

vj(x) = kj - m;(x). (7)
Here k; denotes the reaction rate and m; are metabolic terms, in particular, for mass-action kinet-
ics it holds that m; = [], z;", where s;; is equal to the stoichiometry of metabolite z; in reation j.
However, m; terms can be chosen arbitrary in the k-cone formalism to acomodate other kinetics.

m; denotes the corresponding mass-action terms. Defining the diagonal matrix M := diag(m;),
one can rewrite the steady state condition as

SMk = 0. 8)

For a given vector of substrate concentrations x, SM defines a convex polytope of all possible
reaction rates, and thus enzyme activities, for the given steady state X. Solving the vertex enu-
meration problem for the H-representation given by SM and the constraints on k defines a finite
basis K, called the k-cone. One could solve the vertex enumeration for a k-cone directly, however
it is more practical to derive the k-cone directly from the flux cone V (as defined in eq. 6). Using
the definition of the reaction velocities (equation 7) one can see that the k-cone K can be obtained
by

K=M'v (9)
This requires the diagonal matrix M to be invertible, which is the case if all metabolic terms
are none-zero. In practice zero metabolic terms denote reactions which are inactive and can be
removed from the stoichiometric matrix. This defines one unique k-cone built from a skeleton
flux cone, which gives a good basis for comparative analysis.

One should note that the k-cone can be constrained even further if one has measurements for in
vivo equilibrium constants K éq for a reversible reaction with index i, since it defines an equality

’meaning that the origin is included in the space and that all other points in the space are strictly positive

constraint for the forward and backward rate constants k;" and k;” which may reduce the k-cone
space:

i _ ki
Keq =]{?_+ (10)
K., -k =k (11)

3 Conditional transitions

If we observe the same biochemical systems in two different conditions, normal (n) and disease
(d), this defines their respective k-cones K,, and K;. Using equation 9 we can easily derive a
transformation matrix T that describes the transition from the healthy to the disease space by the
following theorem.

Theorem 1. There exists a diagonal transformation T = M,M" such that K; = TK,,.

Proof. Directly follows by applying equation 9 to K.

K;=M;'V (12)
=M,'M,K, (13)

= M, M, 'K, = TK, (14)

O

Thus, the transformation between the k-cone spaces is given by metabolome data alone. How-
ever, this is a property of the entire spaces. Within the respective spaces the kinetic constants can
assume any value within the respective k-cone.

However, this requires the solutions to come from the same flux cone V which is only the case
if the stoichiometric matrix S and constraints are the same in the normal and disease condition.
Thus, we will now aim at deriving a more general expression.

We will first formulate equation 7 in a vector form by considering the (irreversible) fluxes v
given by
v=M-k. (15)

Hence, if we observe the same biochemical systems in two different conditions, normal (n) and
disease (d), the respective enzyme activities are given by

k, = M;lvn and (16)
k;=M;'v,. (17)

This raises the question if there exists an affine transformation between the normal and disease
state.

Theorem 2. Given enzyme activities k,, and k, it holds that

k; = TWKk,, where (18)
T=M,M;' (19)
W = diag(vy/v,). (20)

Proof. Straight forward using equations 17 and the commutativity of diagonal matrices.

k;=M;'v, (21)
= M, diag(vy/v,)vn (22)

= M ! diag(vy/v,)M, M, v, (23)

= M, M; " diag(vy/v,)M; 'v, (24)
=TWM_ v, = TWk, (25)

O

This gives an affine transformation between the enzyme activities given by the normal and
disease state. Furthermore, the transition is composed of the transformation matrix T and the
weight matrix W. Even though the theorem did not assume the same flux cone for both conditions
this time, it recovers the transformation matrix T again. Since T and W are diagonal one can
intepret their product as weighting each diagonal entry in T by the diagonal entries in W. Thus,
from a biochemical point of view, the change in enzyme activities from the normal to the disease
state can be decomposed into changes in the mass-action terms (the concentration-dependent part
of the kinetics) and the flux changes between the two conditions. W is usually not known, but T
can easily be calculated from steady state measurements of metabolites. A healthy system using
k,, must traverse through TW towards k,;. Thus, TW contains all possible changes to traverse
into the disease state and acts as a representation for the regulatory events occurring between k,,
and k,. Reactions with large entries in T are either regulated or must show a strong alteration in
their steady state flux balance, given by v, /v,, that counteracts the entries in T. The more similar
the steady state flux distributions of the normal and disease state are, the more meaningful is T. In
particular, if the flux cones V,, and V, are similar, randomly sampling feasible fluxes v,,, v, would
in average result in a weight matrix W close to the identity matrix and TW ~ T.

4 Stability analysis

The dynamics of the system are given by the ODE system

dx
i Sv(x) = SM(x)k (26)

Evaluating this ODE system at a perturbed steady state x* + Ax and performing a linear ap-

proximation yields

dx d: X _ SM(x* + Ax)k (27)
dx) .
0+ e Sdiag(k)J (x*)Ax. (28)

Here 7 (x*) denotes the Jacobian for the metabolic terms with 7 (x) = <d”;; (_X)> . The solution
7 Z]

to this system is given by the matrix exponential via
Ax(t) = exp(Sdiag(k)J (x*)t)Ax(0). (29)

Given a k-cone K = {k;} we can use its basis property to express all possible k by k =). w/k;
(w; > 0 € R), yielding

Ax(t) = exp(S diag(z wik;) T (x*)t) Ax(0) (30)

= H exp(w;S diag(k;)J (x*)t)Ax(0) (31)

The matrix exponentials are given by the eigendecomposition, resulting in
Ax(t) = [] Qi exp(wiAit)Q; ' Ax(0) (32)

where Q; contains the eigenvectors pertaining® to w;k; and A; its eigenvalues on the diagonal.
Each elements of the solution is, thus, denoted by a reweighted product of exponentials

Z"j
for some weights «; and indices 7, j with associated weights ¢; ;.

Thus, some conclusions about the stability of a solution can be drawn based on the eigenvalues
pertaining to the basis vectors in K. Particularly, if w; > 0 only for stable basis vectors (R(A;) < 0)
all resulting k will lead to a steady state as well. In case some of the basis vectors are unstable no
general conclusion can be drawn since, due to the product in the expression, the resulting system
can either be stable or unstable based on the structure of the matrices Q; and the weights w;.
However, due to the sum form in equation 33 one can see that the magnitude of the eigenvalues
dictate the resulting stability, meaning that large absolute eigenvalues from a stable state can
dominate small unstable ones.

3“pertaining” meaning that Q; contains the eigenvectors of w;S diag(k;) 7 (x*) and A; its eigenvalues on the diag-
onal.

k-cone analysis protocol

Protocol: k-cone analysis of HeLa cells

Installation

All of the analysis is performed in R. As such the first thing you will need is to install R. For installation
instructions see http://r-project.org. In Ubuntu and Debian R can be installed via the Terminal using

sudo apt-get install r-base r-base-dev

Additionally some of the dependencies of dycone require development versions of some libraries for web
security and scraping. In Ubuntu and Debian those can be installed via

sudo apt-get install libxml2-dev libcurl4-openssl-dev libssl-dev libgmp-dev

Most of the actual analysis is implemented in the dycone R package. It can be installed using devtools in
the following manner. We will also install all optional dependencies so we can build this document. In a
Terminal type R to start R, than use the following commands:

install.packages("devtools")

source("http://bioconductor.org/biocLite.R")

biocLite(c("Biobase", "IRanges", "AnnotationDbi", "affy", "frma", "genefilter",
"GEOquery", "hgul33plus2.db", "hgul33plus2frmavecs", "limma"))

devtools: :install_github("cdiener/dycone", dependencies = TRUE)

This will install dycone and all additional dependencies. You will see at lot of messages from the compiler
and the whole process might take a few minutes. After that the dycone library can be loaded with

library(dycone)

Reading the model and additional data

Dycone models can be obtained by a variety since for most analysis an irreversible stoichiometric matrix is
sufficient. However dycone uses an internal representation which is a list of reactions. Here each list entry
requires at least the entries S, P, N_S, N_P and reversible (all vectors) specifying the names of substrates and
products, the respective stoichiometries and the reversibility of the reaction. Each reaction can furthermore
carry an arbitrary amount of annotations. Those models can be read from a csv-like file format. The model
used in this analysis can be found in “reactions.csv” and be read and output easily by

library(dycone)

r <- read_reactions("reactions.csv")
print (r)

Model has 59 reactions (41 reversible)
BPGM: 1x13dpg <=> 1%23dpg
BPGM: 1x23dpg -> 1*3pg + 1*pi

http://r-project.org

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ENO:
ALDO:
FBP:
GAPDH:
PFK:
GPI:
ACYP:
PGK:
PGAM:
PGM:
PKM:
TPI:
LDH:
G6PD:
PGD:
PGL:
PGM:
PRPS:
RPE:
RPI:
TALDO:
TKT:
TKT:
ACO:

PDH+CS:

1x2pg <=> l*pep
1xfdp <=> 1xdhap + 1x*g3p
1xfdp -> 1xf6p + 1*pi

1xg3p + 1*nad + 1%pi <=> 1%x13dpg + 1*nadh

1xatp + 1*f6p -> 1xadp + 1xfdp
1xgbp <=> 1*f6p
1%13dpg -> 1*pi + 1*3pg
1x3pg + 1lxatp <=> 1*13dpg + lxadp
1%2pg <=> 1%3pg
1*xglp <=> 1xg6p
1xadp + 1*pep —-> lxatp + 1lx*pyr
1xdhap <=> 1*g3p
1*nad + 1xlac-L <=> 1*nadh + 1xpyr
1xgbp + 1*nadp -> 1*6pgl + 1*nadph
1xnadp + 1*6pgc <=> 1*nadph + 1*rubp-D
1x6pgl -> 1x6pgc
1xrlp <=> 1*rbp

1*xatp + 1*r5p <=> l*amp + 1*prpp
1xrubp-D <=> 1*xxubp-D
1xrbp <=> 1xrubp-D

1xg3p + 1*xs7p <=> 1xf6p + 1xedp
1xrbp + 1*xubp-D <=> 1*g3p + 1*s7p
1*xubp-D + 1%edp <=> 1%f6p + 1*xg3p
1xcit <=> 1x*icit

FH: 1%fum <=> 1*mal-L

ICDH3: 1*nad + 1*icit <=> 1*nadh + 1lxakg
ICDH1: 1*icit + 1*nadp <=> 1*akg + l*nadph
MDH: 1*nad + 1*mal-L <=> 1*nadh + 1*oaa
SDH: 1xsucc <=> 1xfum

SUCL+0GDH:

SUCL+0GDH:

ME1: 1*mal-L + 1*nad <=> lxpyr + 1*nadh
ME2: 1*mal-L + l*nadp <=> 1*pyr + 1xnadph
PCK: 1%oaa + 1l*gtp <=> lxpep + 1l*gdp

PC: 1*pyr + 1xatp —> 1%oaa + lxadp + 1*pi

GLS:
GLUD:
GLUD:

1xgln <=> 1xglu
1xglu + 1*nad <=> 1xakg + 1*nadh
1*glu + 1*nadp <=> l*akg + l*nadph

HA: 1xpi + 1xadp -> 1lx*atp
ND: 1%nadh -> 1*nad

GPX:
GSR:

2%gsh -> 1xgssg

1xgssg + 1*nadph -> 2%gsh + 1xnadp

EX_glp: -> 1*glp
EX_gln: <=> 1*xgln
EX_nadp: <=> 1xnadp
EX_nadph: <=> 1xnadph

EX_adp: -> 1xadp
EX_amp: <=> 1l*amp
EX_nad: 1%nad ->
EX_nadh: -> 1*nadh
EX_pi: <=> 1x%pi
EX_gdp: <=> 1xgdp

EX_gtp: <=> 1x*xgtp

1*xoaa + 1*pyr + 1*nad -> 1*cit + 1xnadh

1xsucc + 1*xatp + 1*nadh <=> 1xakg + 1*nad + 1xadp + 1*pi
1x*succ + 1xgtp + 1*nadh <=> 1xakg + 1*nad + 1*xgdp + 1*pi

EX_gsh: <=> 1%*gsh
EX_atp: 1lxatp —>
EX_lac: 1xlac-L <=>

Looking at the first reaction we see the additional annotations

r[[1]]

$S

[1]1 "13dpg"

##

$P

[1] "23dpg"

##

$N_S

[1]1 1

##

$N_P

[1] 1

##

#i#t $rev

[1] TRUE

##

$abbreviation
[1] "BPGM"

##

$pathway

[1] "Glycolysis"
##

$KEGG_reaction
[1] "RO1662"
##

$KEGG_enzyme
[1] "5.4.2.4" "5.4.2.11"
##

$Keq

[1] 7300000

The metabolome measurements are found in in “metabolome.csv” (Table S1 in the manuscript). Here “Rx”
denotes repetition x and “He/Ha” the HeLa and HaCaT cell lines. The measurements are given as pmol
per million cells. First we will convert those to micro-mole per liter by using the experimentally quantified
volume of HeLa cells (1.54 {L, http://doi.org/10.1002/nbm.1173).

metab <- read.csv("metabolome.csv")
First 4 columns are annotations
metab[, 5:10] <- 1e-6 * metab[, 5:10]/(1le6 * 1.54e-12)

As one can see, the names used by the provider during metabolite measurements are not the same we used in
the model. Thus, we will also need an ID map to identify the metabolites. This map is given in id_map.csv

id_map <- read.csv("id_map.csv", stringsAsFactors=FALSE)
head (id_map)

http://doi.org/10.1002/nbm.1173

name kegg hmdb

1 13dpg C00236 HMDB01270
2 3pg C00197, CO0597 HMDB60180, HMDBO0807
3 pi C00009 HMDB01429, HMDB02142
4 23dpg C01159 HMDB01294
5 2pg C00631 HMDB03391
6 pep C00074 HMDB00263

Some of the metabolites have several IDs assigned to them. We will come back to that later.

The log-fold changes for all combinations between HeLa and HaCaT cells can be obtained by

library(tidyr)
library(ggplot2)

comb <- expand.grid(a = 1:3, b = 4:6)
mlfc <- apply(metab[, 5:10], 1, function(m) log(m[comb$b]l, 2) - log(m[comb$al, 2))
colnames(mlfc) <- as.character(metab$name)
mlfc <- gather(data.frame(mlfc, check.names = F), name, lfc, factor_key=T)
ggplot(mlfc, aes(x = name, y = 1fc)) + geom_boxplot() + theme_bw() +
theme (axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
xlab("") + ylab("log-fold change")

2.5+

By
I Ul éé*#ﬁ%%%ﬁéﬁﬂ*Q$$$Déé$$$¢+éﬂé¢$$$eam$$¢u¢n+¢¢¢me%$¢§$ iy

log-fold change

-5.0 ¢
..
TTOT0OTTTTA LA TTLA0 00 OFEL + >80 000090 0A +0 00 O3PSOV CECOTTFELLLEF0000 0TEALTTLAL 0L VLD QD
00 EC0000STES00E 2K EEOROSAB<OELA &8 IT000—S 500 8 BOEE00SE EQTROS SEO S oSS 3ESBEMESS
T T B=E mmmmgscgmmw<gcgjgazgo§NE:&2450<N §£®<Jgg®<6mm>h£< m&ghogm§om<0<os:<gaw
L0030 00- 20 002 283 2> < ToF¥ o 3 Zo g g8 Soo E E £o @ SIEGE DS
SEESOEESE 85 w28 89> 89,2 23 88 °s € 88 S5s S § °% 2 352% o8
£08 0580 €0 &3t £°F ¢l op>- £ £ = < cc x8s O I & c S5 598
335 3855 2E 2°< o : g e 8 3 & 985 8§ & 3 § aa88 ©
82 ‘50897 8§ ¢ 42 o o5 xR 2 27 3= £ o
8£e b7 E£ g8 X 2 28 2% S 3 se I g 2
33 “ 2883 § £3 88 2 8 8 s £
Teo S =2 = 82 3 2 I = Sa S
'D_': o - b= Q. T o >0 =
B g O] ro S o o <3 [
L » n = < o9
© = <] 5.2

= ° S

| 3 £

S (=]

Imputation of missing data

At first we will try to see which metabolites in the model are missing in the measurements. For this we will
look for matches of the respective metabolites from the model in the metabolome measurements. Matching
will be done based on KEGG IDs.

matches <- sapply(id_map$kegg, grep_id, x = metab$kegg _id)
miss <- is.na(matches)
table (miss)

miss
FALSE TRUE
28 15

So we see we have measurements for about 2/3 of the required metabolites To impute the missing values we
will first construct a data frame for all metbaolites with missing entries and see how to fill it in the following
steps.

full <- id_map[, 1:2]

d_idx <- 5:10

m <- matrix(NA, nrow = nrow(full), ncol = length(d_idx))
colnames(m) <- names(metab) [d_idx]

full <- cbind(full, m)

matched_idx <- !is.na(matches)

full [matched_idx, 3:8] <- metab[matches[matched_idx], d_idx]

full now already includes the metabolome measurements but still has missing entries which we will now
scrape from the Human Metabolome Database (HMDB, http://hmdb.ca). HMDB assigns a single KEGG
is to each metabolite in the database. However, there are cases where a single metabolite can be identified
by several IDs in the HMDB. This may happen if we have “Glucose” which may for instance map to
“alpha-D-Glucose” or “beta-D-Glucose”. This is the reason why our id_map includes several HMDB and
KEGG IDs for some metabolites.

We will now scrape the concentrations for all metabolites in the model from HMDB. This might take some
time so we will use the caching operator %c% from dycone which will take an R expression and will cache all
assigned variables in that expression to a cache file, so that rerunning the script will read the results from the
cache and not rerun the analysis. To run the analysis again simply delete the cache file without changing any
of the code.

{
concs <- hmdb_concentration(id_map$hmdb, add = id_map[, 1:2])
} Y%c% "scraped_concs.Rd"

We use this data to get the mean values for measured concentrations (HMDB quantifies almost all metabolites
by micro-moles per liter as well) by taking them from cytoplasm measurements where available, or blood
as a fallback. (In any way those imputations will only be used for stability analysis and not for differential
measurements. If one only wants to use the differential analysis of dycone you can simply substitute all NA
values in full by any constant.)

m_concs <- as.vector(by(concs, concs$name, priority_mean))
names (m_concs) <- levels(factor(concs$name))

In order to fill the gaps in the full data set we will use the patch function from dycone. patch will first to
attempt to fill any hole with measurements from the own data set, either by using the mean values of the
same cell line or, if not available, by the mean value of the other cell line. Thus, giving priority to the local
data before the scraped ones. Only measurements with missing entries in both cell lines are filled with the
scraped mean concentrations from HMDB.

scraped <- data.frame(kegg = names(m_concs), normal = m_concs)

rownames (scraped) <- NULL

patched <- patch(full, id = 1, normal = 3:5, treatment = 6:8, ref_data = scraped)
head (patched)

http://hmdb.ca

name kegg R1Ha R2Ha R3Ha R1He

1 13dpg C00236 0.40000 0.40000 0.40000 0.40000
2 3pg C00197, CO0597 94.98857 59.30123 54.115568 223.56188
3 pi C00009 633.75500 633.75500 633.75500 633.75500
4 23dpg C01159 4500.00000 4500.00000 4500.00000 4500.00000
5 2pg C00631 28.88023 28.88023 28.88023 40.14753
6 pep C00074 17.00000 17.00000 17.00000 17.00000
R2He R3He
1 0.40000 0.40000
2 74.10929 71.02831
3 633.75500 633.75500
4 4500.00000 4500.00000
5 17.61292 28.88023
6 17.00000 17.00000

This yields a complete data set patched which we will use for the dycone analysis.

The k-cone of HaCaT and HeLa cells

As described in more detail in the Supplementary Text of the publication the k-cone of several metabolome
measurement can be generated from a skeleton flux cone. Thus, we will first calculate the flux cone for our
model. This will take about half an hour, so we will use the caching operator again to avoid recalculating the
flux cone every time we run the analysis. For this we will need an irreversible stoichiometric matrix which
can be generated with the stoichiometry function of dycone.

S <- stoichiometry(r)
{ V <- polytope_basis(S) } %c% "basis.Rd"
dim (V)

[1] 100 80231

The flux cone has >80.000 basis vectors here.

For the metabolic terms we use the mass-action terms generated from the imputed metabolome measurements.
This is sufficient to create the k-cones for the six measurements. ma_terms expects a single named vector of
concentrations, or a data frame with a “name” column and several columns containing concentrations.

mats <- ma_terms(S, patched[, c(1, 3:8)]1)

K <- lapply(1:6, function(i) kcone(V, mats[, i]))
Reaction names to annotate the azis

rn <- rp(make_irreversible(r), "abbreviation") [,2]

To visualize the k-cone we will use the plot_red function which first projects the high-dimensional k-cone
into the two dimension capturing the most variance, followed by clustering of the extreme rays of the cone to
avoid repeatedly using rays that are very similar. The shaded area corresponds to the interior of the cone, so
all feasible sets of kinetic constants fall into the shaded area of the respective k-cone. We will use blue for
HaCaT cells and red for HeLa. Since the used k-means clustering is not entirely deterministic the images
here might look a bit different here than in the publication (particularly arrow outliers) or be rotated along
one of the two PC axes. However, the general appearance of the cones should be the same.

plot_red(XK, col = rep(c("blue", "tomato2"), each=3), r_names=rn)

Bases are very large. Reducing to 201 clusters...
Mean in-cluster distance: 0.12954.
Information captured in projection: 93.365955%.

© _|
o
<
[oX
'OO
[0
[
<o
w o
o
o
o o]
< o
Ll
= o
Q] o
n_ 1
m
[
> S
(@) T
<
©
o
©
o I I I I

-10 0 10 20

PGL, EX_nadp, BPGM, ACYP

As we can see there are only minor differences between the k-cones. To see the proportion of the cone
with large entries in the transformation matrices we will first calculate the log2-fold changes between all
combinations of HeLa and HaCaT cells and only use those with an absolute log2-fold change larger than 1
(thus, a fold change larger than 2).

combs <- expand.grid(4:6, 1:3)

1fcs <- apply(combs, 1, function(i) log(mats[, i[2]], 2) - log(mats[, i[1]], 2))
large <- abs(rowMeans(lfcs)) > 1

K_subset <- lapply(K, function(ki) ki[large, 1)

plot_red(K_subset, col = rep(c("blue", "tomato2"), each=3), r_names=rn[large])

Bases are very large. Reducing to 201 clusters...
Mean in-cluster distance: 2.74911e-05.
Information captured in projection: 93.184890%.

-0.0005 0.0000

EX_atp, ICDH1, GPI, PFK
-0.0010

-0.0015

-0.0020

I I I I I I I
-0.030 -0.025 -0.020 -0.015 -0.010 -0.005 0.000

GPI, ICDH1, EX_atp, PFK

We can also reduce the k-cone spaces even further by using measurements for in vivo equilibrium constants
Keq. Because there are no measured Keq for our cell lines we will use approximations obtained from
http://equilibrator.weizmann.ac.il/. For that we will assume an pH of 7.34 and an ionic strength of 0.15
M for all samples. The estimated Keq values are already contained in the model. And we can thus use the
constrain_by_Keq function from dycone. In order to accelerate this, we again use the caching operator and
will also employ the doParallel package to run the analysis for each k-cone in parallel. If you have less than
6 CPU cores adjust the option accordingly or simply do not setup the cluster which will cause the code to
run on a single core.

this part is optional
library(doParallel)
registerDoParallel(cl = 6)
end of optional part

{
K_small <- foreach(i = 1:6) Ydopar’ {
keq_constraints <- constrain_by_Keq(r)
polytope_basis(S, zero_eq=keq_constraints, m_terms=mats[,i])
}
} %c% "basis_keq.Rd"

par (mfrow=1:2)
plot_red(K_small, col = rep(c("blue", "tomato2"), each=3), r_names = rn)

http://equilibrator.weizmann.ac.il/

Information captured in projection: 28.727957%.

K_subset <- lapply(K_small, function(ki) kil[large, 1)
plot_red(K_subset, col = rep(c("blue", "tomato2"), each=3), r_names = rn[largel)

Information captured in projection: 99.907257%.

T % .

g o

A o AN

- o] r <

5 S -

15 O

o < 4 9 ©

o

+ © =4 5 4

3 g 3

-} [N (_:/; '

5 . -

g £

El S

<. X 5

5 % 53

— E

S o a 7]

5 9] :
| | | | | | | P | | | | |
-06 -04 -02 00 02 04 06 I -0.2 0.0 0.2 0.4 0.6
SUCL+OGDH, EX_pi, EX_gdp, EX_nadh SUCL+OGDH, PFK, EX_atp, GPX

Stability analysis

To get the stability for an entire k-cone we need to run a stability analysis for each basis vector of the k-cone.
Since we have 6 k-cones with over 80.000 basis vectors each this will take a while so we will perform it in
parallel again.

{
stab <- foreach(i = 1:6, .combine = rbind) Y%dopar’% {
concs <- patched[, 2 + i]
names (concs) <- patched$name
S <- stability_analysis(kcone(V, mats[, i]), S, concs)$what
data.frame(what = s, basis_idx = i)
}
} %c% "stab.Rd"

Now we will assign the cell line to each output and plot the counts for the individual stability types.
library(ggplot2)

cell_line <- rep(c("HaCaT", "HeLa"), each = 3)
stab$cell_line <- factor(cell_line[stab$basis_idx], levels = c("HaCaT", "HeLa"))
ggplot(stab, aes(x = what, fill = cell_line, group = basis_idx)) +
stat_count(position = "dodge", col = "black") +
scale_fill_manual(values = c("royalblue", "red3")) + theme_bw()

60000 -

40000 -

cell_line

count

20000 -

sta'ble unst'able
what

Differential activities

The statistical tests used in dycone assume a log-normal distribution of the metabolic terms. It is sufficient
to show an approximate normal distribution for the log-transformed metabolite measurements since the
log-transform of the metabolic terms is a weighted sum of the logarithmic metabolite measurements for most
of the common kinetics (such as mass-action, Michalis-Menten and Hill). We will compare distribution to a
normal one via quantile-quantile plots and the empirical distribution of the data.

log_all <- log(metab[, 5:10], 2)

colnames(log_all) <- c(pasteO("HaCaT_", 1:3), pasteO("HeLa_", 1:3))
log_hacat <- unlist(log_alll[, 1:3])

log_hela <- unlist(unlist(log_all[, 4:6]))

par (mfrow = 1:2)

qqnorm(log_hacat, pch = 1, col = "royalblue", main = "")
qqline(log_hacat, lwd = 2, col = "darkblue")
points(qgnorm(log_hela, plot.it = F), pch = 2, col
gqline(log_hela, lwd = 2, col = "darkred")

"red3")

x <- seq(0, 16, length.out = 256)

plot(ecdf (log_hacat), pch = 1, col = "royalblue", main = "")

lines(x, pnorm(x, mean(log_hacat, na.rm = T), sd(log_hacat, na.rm = T)), lwd = 2,
col = "darkblue")

plot(ecdf(log_hela), pch = 2, add = T, col = "red3")

lines(x, pnorm(x, mean(log_hela, na.rm = T), sd(log_hela, na.rm = T)), lwd = 2,
col = "darkred")

10

e |]
<
© _|
N o
w0
(0]
= o
g - © _|
g sz ©
x
g o =
(0] L
2 <
E © ©
©
n
< N
o
[aV}
o _1
o
T T T T
0 5 10 15
Theoretical Quantiles X

The data is approximately normal in log-space so we can continue with the analysis.

We already calculated the log-fold changes before, but in order to also assign some statistics to that we can
also use the function hyp from dycone which does that for us. It will generate all log-fold changes between
disease and normal measurements and perform an empirical Bayes version of t-test. The output will be sorted
by increasing p-values and mean log-fold changes. We will also use the full option to obtain the raw log-fold
changes and append some additional annotations to the result using the rp function.

h <- hyp(mats[, 1:3], mats[, 4:6], r, full = T)

Warning: Zero sample variances detected, have been offset

pw <- rp(make_irreversible(r), "pathway")[,2]

r_ids <- rp(make_irreversible(r), "KEGG_reaction")[,2]

h$hyp <- cbind(h$hyp, pathway = pw[hhypidx])

h$hyp <- cbind(h$hyp, reaction_id = r_ids[hhypidx])
write.csv(h$hyp, file = "transform.csv", quote = F, row.names = F)

h$hyp now contains the expected differential activities for each reaction.

head (h$hyp)

idx name reaction type sd_normal
11 11 PFK l1xatp + 1xf6p -> 1xadp + 1xfdp up 0.04180208
13 13 GPI 1xf6p -> 1xgbp up 0.17043926
39 39 TALDO 1¥f6p + 1xedp —-> 1xg3p + 1*s7p up 0.17043926
43 43 TKT 1xf6p + 1xg3p —-> 1*xubp-D + 1*edp up 0.17043926

51 51 ICDH1 1*icit + 1*nadp -> 1*akg + 1*nadph down 0.30874187
67 67 PC 1xpyr + 1xatp -> 1%oaa + l*adp + 1xpi up 0.14576925

sd_disease mean_log_fold ci_low ci_high pval corr_pval
11 0.6374241 3.004645 2.666972 3.433076 0.001269880 0.04228564
13 0.5184869 1.690130 1.404087 1.981428 0.005497133 0.04228564
39 0.5184869 1.690130 1.404918 2.006415 0.005497133 0.04228564
43 0.5184869 1.690130 1.429117 2.006192 0.005497133 0.04228564

11

51 0.3654610 -1.408384 -1.636298 -1.166145 0.002860691 0.04228564

67 0.3539851 1.314515 1.087074 1.503810 0.003312277 0.04228564
pathway reaction_id
11 Glycolysis RO0756
13 Glycolysis ROO771
39 Pentose phosphate RO8575
43 Pentose phosphate R01067
51 TCA cycle RO0709
67 TCA cycle R00214

Those values are the basis for Figures 3 and 4.

Worst-case analysis via linear programming

The analysis we will perform here is very similar to that in the previous section, however, this time we will
obtain the differential enzyme activities by correcting for effects that can be caused by flux variation. For
this we will analyze the smallest and largest flux for each reaction that still allows a given biomass/growth
flux to operate at its optimum. Using dycone the only explicit action required of the user is definition of
the optimization criterion. For this we will first define all metabolites which are precursors for compounds
required for proliferation. Each of those will be assigned a weight which is obtained from the stoichiometry of
Recon 2 biomass reaction (http://www.ebi.ac.uk/biomodels-main/MODEL1109130000). For the cases where
one metabolite is the precursor for several proliferation compounds we use the maximum stoichiometry from
Recon 2. Negative stoichiometries denote compounds that are consumed and positive stoichiometries denote
produced compounds. Here we only produce ADP and Pi to balance the ATP usage. The small difference in
the stoichiometry (20.7045 vs 20.6508) in Recon 2 accounts for the ATP used during DNA replication.

prolif <- c(atp = -20.7045, prpp = -0.053446, pyr = -0.50563, oaa = -0.35261,
glu = -0.38587, cit = -0.15446, "3pg = -0.39253, adp = 20.6508,
pi = 20.6508)

As we can see there is a large requirement for ATP and amino acid precursors. Also the form here is not the
only way to formulate an objective reaction. Please refer to the documentation of fba for alternative input
forms.

We can now use the hyp function again to generate hypotheses for differentially regulated enzymes correcting
for fold changes that can be explained by flux variation. This time setting the type to “fva” which will require
defining the additional v_opt which defines the objective reaction. The output will be same as before only
with an additional column “fva_log_fold” denoting the largest absolute fold-change that can be explained by
flux variability alone. We will also append additional annotations again and save the output to a CSV file.
This will solve a series of linear programming problems (in our case more than 200). To accelaerate this a
bit, hyp will automatically execute those in parallel if you registered any of the backends compatible with
foreach. Since we already did that during the stability analysis the following code will automatically run in
parallel. Finally, we will save the complete results in EDAs.csv.

Generate hypothests
h <- hyp(mats[, 1:3], mats[, 4:6], r, type = "fva", obj = prolif, full = T)

Warning: Zero sample variances detected, have been offset

pw <- rp(make_irreversible(r), "pathway")[,2]

r_ids <- rp(make_irreversible(r), "KEGG_reaction")[,2]

h$hyp <- cbind(h$hyp, pathway = pw[hhypidx])

h$hyp <- cbind(h$hyp, reaction_id = r_ids[hhypidx])
write.csv(h$hyp, file = "EDAs.csv", quote = F, row.names = F)

12

http://www.ebi.ac.uk/biomodels-main/MODEL1109130000

Let us use visualize those results to also compare the obtained regulations on a pathway level and mark

reactions whose expected differential activity log-fold changes can not be explained by flux variability.

ggplot (h$hyp, aes(y = pathway, x = mean_log_fold, col = pathway)) +
geom_vline(xintercept
geom_point (aes(shape

= position_jitter(height

theme_bw() + theme(legend.position

position

0, linetype

"dashed") +

abs(mean_log_fold) > fva_log_fold),

0.2), size

3) + scale_shape_manual(values

c(l, 17)) +

"none") + xlab("mean log-fold change") + ylab("")

TCA cycle -

Pentose phosphate -

Oxidative Phosphorylation -

mean log-fold change

@)
1
1
}
Oxidative stress - : A
|
1
1
Y A
}
1
1
Glycolysis - Ag © @ R 40 o O
:
}
1
Exchange - :
T ; T T T
-1 0 1 2

The full output of hyp now contains some additional information. One interesting one are the upper bounds
for log-fold changes in the fluxes due to variation.

print (h$lfc_va)

##
##
##
##
##
##
##
##
##
##
##
##

[1]

[6]
[11]
[16]
[21]
[261]
[31]
[361]
[41]
[46]
[51]
[56]

= o

()]

O o= 0000 N o

.315085e+01
.288475e+00
.414869e-13
.939693e-13
.352926e-13
.256418e-13
.057074e+01
.284599e+01
.271153e+01
.432499e-11
.315085e+01
.192625e+01

= 010 NNOOOE B B OO,

.315085e+01
.239114e+01
.413716e+00
.927036e+01
.288475e+00
.547966e-01
.757134e+00
.392306e+00
.464084e+00
.0567042e-01
.315085e+01
.215065e+01

O = 000N OO o= 01O

.291667e+01
.000000e+00
.293067e+01
.014404e-01
.224029e+01
.198938e+01
.312862e+01
.464084e+00
.267799e+01
.192625e+01
.704836e+00
.364138e-13

13

P OON TR O NN e

.014404e-01
.998956e-13
.1569063e+01
.372992e-01
.480733e+01
.643242e-12
.464084e+00
.271153e+01
.725973e+00
.315085e+01
.262228e+01
.224596e+00

G100 U1 O N OOk O D

.927036e+01
.242982e+01
.306548e+01
.1562572e+01
.285063e-12
.315085e+01
.250142e+01
.464084e+00
.291444e+01
.315085e+01
.057042e-01
.094637e+01

[61] 5.315085e+01 5.315085e+01 5.315085e+01 5.315085e+01 3.880485e+00
[66] 5.151465e+01 1.162704e+01 1.035989e+00 5.218596e+01 5.315085e+01
[71] 5.306277e+01 5.315085e+01 5.146359e+01 4.118005e-13 6.409736e-12
[76] 6.411978e-12 6.397563e-12 3.350653e-13 1.035989e+00 5.218596e+01
[81] 6.395000e-12 5.863020e+00 1.550067e+01 6.375299e-12 2.282192e-10
[86] 5.313745e+01 6.757134e+00 1.530418e+01 1.317673e+01 1.355539e+01
[91] 5.738939e-13 5.216287e+01 1.012125e+00 1.012125e+00 5.216287e+01
[96] 5.315085e+01 5.315085e+01 2.573089e+00 4.271449e-12 1.310771e+01

We can use those estimates to annotate each of the log-fold changes from the EDAs by the maximum log-fold
change estimate from the FVA. Thus, marking reactions whose change in activity is essential for growth.

library (pheatmap)

x <- h$lfc_disease

m <- max(range(x))

ann <- data.frame("flux variability" = h$lfc_va, check.names = FALSE)

pheatmap (t (x [hhypidx, 1), breaks = seq(-m, m, length.out = 102), col = dycomne:::DC_DIVCOL(101),
cluster_rows F, cluster_cols F, cellwidth = 10, cellheight 10, labels_col = hhypname,
annotation_col ann, show_rownames FALSE)

HEEN W N EEN [N | | HEN BEN N N BN N EN || BT] flux variability

4 flux variability

N . B s0

WOd

HABO+10NS
ON3

Wvod

an1o

HA@D0+10NS

We can also identify significantly altered reactions which are essential directly.

essential <- abs(hhypmean_log_fold) > hhypfva_log_fold
h$hyp [h$hyp$corr_pval < 0.05 & essential,]

idx name reaction type sd_normal
11 11 PFK l*xatp + 1*%f6p -> 1*adp + 1*fdp up 0.04180208
26 26 G6PD 1*gbp + lxnadp -> 1*6pgl + 1*nadph down 0.12433940
16 16 PGK 1%13dpg + 1*adp —-> 1x3pg + 1*atp up 0.03160489
21 21 PKM 1xadp + 1xpep -> 1*atp + 1xpyr up 0.03160489
74 T4 HA 1xpi + 1%adp -> 1xatp up 0.03160489
99 99 EX_lac 1xlac-L -> up 0.20775175
sd_disease mean_log_fold ci_low ci_high pval

11 0.6374241 3.0046450 2.6656965 3.3295961 0.001269880

26 0.1903323 -0.8019328 -0.9105587 -0.6874364 0.002003223

16 0.1650312 0.5589038 0.4586676 0.6391485 0.004747871

21 0.1650312 0.5589038 0.4570282 0.6434021 0.004747871

74 0.1650312 0.5589038 0.4551886 0.6448890 0.004747871

99 0.2339761 0.7234938 0.6096104 0.8966243 0.006721754

fva_log_fold corr_pval pathway reaction_id
11 -6.414869e-13 0.04228564 Glycolysis ROO756
26 7.256418e-13 0.04228564 Pentose phosphate RO0835
16 7.939693e-13 0.04228564 Glycolysis R0O1512
21 5.352926e-13 0.04228564 Glycolysis R0O0200
74 4.118005e-13 0.04228564 Oxidative Phosphorylation R0O0256
99 4.271449e-12 0.04801253 Exchange <NA>

14

Reactions that appear strongly regulated in this list can be interpreted as necessary for the given proliferation
objective, since there is no flux distribution yielding optimal proliferation without those regulation events.

Heterogeneity and co-regulation

Cancer is known to be a very heterogeneous disease. thus, we might ask what the variation in enzyme
activities is within HaCaT and HeLa cells. The hyp output already calculates the standard deviations for the
log-fold changes within HaCaT cells and between HeLa and HaCaT cells. So we can easily visualize those.

ggplot (h$hyp, aes(x = sd_normal, y = sd_disease, col = pathway)) +
geom_polygon(data = data.frame(x = c(0, 9, 9), y = c(0, 3, 27)),
aes(x = x, y = y), fill = "blue", alpha = 0.1, col = NA) +
geom_abline(color="blue", alpha=0.75) + geom_point() +
theme_bw() + coord_cartesian(xlim = c(-0.1, 2), ylim = c(-0.1, 2)) +
xlab(expression(HaCaT ~ sigma)) + ylab(expression(Hela ~ sigma))

2.0 4
1.5-
> pathway
Exchange
(o) o Glycolysis
3 1.0+ e Oxidative Phosphorylation
:?:) e Oxidative stress
e Pentose phosphate
0.5 - TCA cycle
0.0 -
0.0 0.5 1.0 15 2.0
HaCaT o

The shaded area correspond to a 3-fold change in both directions (lower and higher) standard deviations. As
we can see in the optimized estimates this holds for most pathways, and only a few reactions show higher
heterogeneity in cancer (HeLa cells). Let us visualize the correlation between those reactions to see whether
they might be co-regulated.

fc_sd <- hhypsd_disease/hhypsd_normal

We ignore fold changes with incomplete data (zero sd in one sample)

sig <- fc_sd > 3 & is.finite(fc_sd)

type <- paste0O(hhypnamelsig], " (", hhyptypelsigl, ")")

d <- cor(t(h$1fc_disease[h$hyp$idx[sigl, 1))

pheatmap(d, col = dycone:::DC_DIVCOL(101), breaks = seq(-1, 1, length.out = 102),
labels_row = type, labels_col = type)

15

1
HA (up) I
PGK (up)
0.5
PKM (up)
ACO (down)
0
ACO (down)
PFK (up)
-0.5
TALDO (up)
GPI (up)
-1
TKT (up)
T 3 238338 3 F 8 =
= X 20025 2 3
S 55 5% s 235§
- = = = c
2 2 2

Comparison with gene expression data

Gene expression analysis

We will start by reading a list containing IDs and cell lines for 58 untreated samples from the GEO database
and creating an output directory for the downloaded data.

sample_info <- read.csv('"ge_samples.csv")
dir.create("ma"

Since we might run this analysis several times we will first check whether the data is already present and

than download all missing data.

library(affy, quietly=T, warn.conflicts=F)
library (GEOquery, quietly=T, warn.conflicts=F)

already_there <- dir.exists(pasteO("ma/", as.character(sample_info$geoID)))
file_info <- lapply(sample_info$geoID[!already_there], getGEOSuppFiles, baseDir="ma")

We will now look for all downloaded raw .cel files and also define “normal” and “disease” groups, where
HaCaT and keratinocyte arrays will be treated as normal and the HeLa assay as disease.

celfiles <- list.files("ma", pattern="#*.celx*", recursive=T, ignore.case=T)
names (celfiles) <- sapply(celfiles, dirname)

condition <- rep.int("disease", length(celfiles))
condition[sample_info$cell_line %in} c("HaCaT", "keratinocyte")] <- "normal"
condition <- factor(condition)

table(condition)

16

http://www.ncbi.nlm.nih.gov/geo/

condition
disease normal
38 20

We will now read the compressed raw data files and assign the phenotype annotations (cell lines and condition).
raw_data <- ReadAffy(filenames = pasteO("ma/", celfiles[sample_info$geoID]),
compress=T)

pData(raw_data)$cell_line <- sample_info$cell_line
pData(raw_data)$condition <- condition

In order to make the data comparable across arrays we will normalize all of the 58 samples using frozen set
RMA.

library(frma, quietly=T, warn.conflicts=F)

eset <- frma(raw_data)

We will follow this by a short quality control. For this we will check whether the normal and disease samples
form condition-specific groups in their expression patterns. As a first try we will visualize the the gene
expression patterns in the first two principal components.

pca <- prcomp(t(exprs(eset)))
sum(pca$sdev[1:2])/sum(pca$sdev)

[1] 0.1760303

ggplot(data.frame(pca$x), aes(x=PCl, y=PC2)) + theme_bw() +
geom_point(aes(col=condition, shape=sample_info$cell_line))

17

a
100 -
504 = sample_info$cell_line
- e HaCaT
i A Hela
[]
Al = keratinocyte
O 0 - ¢ y
o
L] . condition
= disease
50 e normal
Y
-100 - ¢ s
[]
-150 -100 -50 0 50
PC1

We can also quantify this by first clustering the 58 samples by their expression patterns into two clusters and
check how well those two clusters correspond to the condition.

cl <- kmeans(t(exprs(eset)), 2)

normal_cluster <- cl$cluster[1] # first condition is normal

cl_err <- sum(cl$cluster[condition == "normal"] != normal_cluster)/length(cl$cluster)
cat(sprintf ("Clustering error between normal/disease: %f%%\n", cl_err*100))

Clustering error between normal/disease: 0.000000%

We will now try to find differentially expressed genes between the normal and disease condition. Since many
probes on the array match to the same gene we will choose the probe for each gene which has the maximum
mean expression across all 58 samples.

library(genefilter, quietly=T, warn.conflicts=F)
mean_max <- findLargest(rownames(eset), rowMeans(exprs(eset)))
gset <- eset[mean_max,]

rownames (gset) <- as.character (hgul33plus2ENTREZID) [mean_max]
cat(sprintf("Identified genes: %d\n", nrow(gset)))

Identified genes: 20546

Differential expression will be judged by a t-test where the sample variances are estimated using the empirical
Bayes method from the limma package. Finally, we will save the gene-wise log2-fold changes along with
FDR-corrected p-values to an intermediate data file.

18

library(limma, quietly=T, warn.conflicts=F)

design <- model.matrix(~ O + condition)

colnames(design) <- levels(condition)
fit <- lmFit(gset, design)

contrast.matrix <- makeContrasts(disease - normal, levels=design)

cfit <- contrasts.fit(fit, contrast.matrix)
ebfit <- eBayes(cfit)

ma_lfcs <- topTable(ebfit, number=Inf)
save(ma_lfcs, file="gene_expression.Rd")

head(ma_lfcs)

#it logFC AveExpr t P.Value adj.P.Val B
26298 -7.285472 6.106766 -83.65951 1.864868e-62 3.831558e-58 127.81730
53836 -5.894125 5.800357 -73.40869 3.560666e-59 3.657873e-55 121.56471
999 -7.838556 6.646372 -62.96517 2.463908e-55 1.687448e-51 113.89817
153572 -4.679696 5.949331 -61.28846 1.162532e-54 5.971347e-51 112.51945
646 -5.391413 4.966523 -50.91969 4.740809e-50 1.948093e-46 102.86099
6665 -3.550500 6.694442 -47.15074 3.789863e-48 1.297775e-44 98.77662

Comparison to expected differential activity

We will start by mapping all the EC numbers of the reactions used in the model to its respective ENTREZ
gene ids and names and saving that information into the info data frame. Note that a single reaction might
be associated to several EC numbers (isoenzymes for example) and every EC number might be associated
with several genes.

library(AnnotationDbi, quietly=TRUE, warn.conflicts=F)
library(dplyr, quietly=TRUE, warn.conflicts=F)

ecs <- rp(make_irreversible(r), "KEGG_enzyme")
ens <- AnnotationDbi::select(hgul33plus2.db, keys =
columns = c("SYMBOL", "ENSEMBL", "ENTREZID"))

ecs[, 2], keytype = "ENZYME",

'select()' returned many:many mapping between keys and columns

load("gene_expression.Rd")
info <- ecs ¥%>% group_by(r_idx) %>% do(ens[ens$ENZYME %in’, .$KEGG_enzyme,])

We will only use those EC numbers for which we could find a corresponding gene on the arrays.

good <- sapply(info$ENTREZID, function(eid) !is.na(eid) &
(eid %in% rownames(ma_lfcs)))
cat (sprintf ("/f%), of enzymes found on array.\n", sum(good)/length(good)*100))

86.206897), of enzymes found on array.

19

info <- info[good,]

Now we will start adding the correponding log fold changes and p-values from the EDAs.

info <- info ¥>% group_by(r_idx) %>} mutate(met_lfc =
h$hypPmean_log_fold[h$hyp$idx %in), r_idx], met_pval =
hhypcorr_pval [hhypidx %in% r_idx], pathway =
hhyppathway [hhypidx %in% r_idx])

And, finally, we will add the log fold changes obtained from the microarrays along with their p-values. The
fully assembled info data frame will be saved as a csv file.

get_ma_lfc <- function(eid) {
found <- which(eid[1] == rownames(ma_lfcs))

return(data.frame(ge_lfc = ma_lfcs$logFC[found],
ge_pval = ma_lfcs$adj.P.Val[found]))
}

ge <- lapply(info$ENTREZID, get_ma_lfc)
info <- cbind(info, do.call(rbind, ge))
write.csv(info, "all 1fcs.csv")

First we will take a look how well the two measurements for enzyme activity coincide in their log fold changes.
Significance in EDAs and gene expression is indicated by triangles.

info$significant <- info$ge_pval<0.05 & info$met_pval<0.05

ggplot(info, aes(x=ge_lfc, y=met_lfc, color=pathway,shape=significant)) +
geom_hline(yintercept=0, linetype='"dashed") +
geom_vline(xintercept=0, linetype="dashed") + geom_point() + theme_bw() +
xlab("gene expression") + scale_color_discrete(drop=FALSE) +
ylab("metabolome")

3 - 1' AA pathway
| Exchange
5 E o Gilycolysis
© . . A # & A e Oxidative Phosphorylation
LED N l e Oxidative stress
'c8ts N pee @ . e Pentose phosphate
' ° > ® 80 o TCA cycle
E O0r---mmmmm - - ;.-.i-—:-...s.t _____ $-
o e L significant
1. ®ecepg 4§ e FALSE
i Ao TRUE
-4 -2 0 2 4

gene expression

20

cor.test(info$met_lfc, info$ge_lfc)

#i#

DPearson's product-moment correlation
#i#t

data: info$met_lfc and info$ge_lfc
t = 0.21481, df = 498, p-value = 0.83
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:

-0.07813125 0.09723380

sample estimates:

cor

0.009625287

So there is no correlation on a global level. However, looking at the changes that are significant in EDAs and
gene expression we find some cases were gene expression influences the enzymatic activity.

info[info$significant,]

r_idx ENZYME SYMBOL ENSEMBL ENTREZID met_lfc met_pval
41 11 2.7.1.11 PFKM ENSG00000152556 5213 3.0046450 0.04228564
42 11 2.7.1.11 PFKP ENSGO0000067057 5214 3.0046450 0.04228564
#H# 47 13 5.3.1.9 GPI ENSG00000105220 2821 1.6901302 0.04228564
48 13 5.3.1.9 GPI ENSG00000282019 2821 1.6901302 0.04228564
49 13 5.3.1.9 GPI ENSG00000105220 2821 1.6901302 0.04228564
50 13 5.3.1.9 GPI ENSG00000282019 2821 1.6901302 0.04228564
b7 16 2.7.2.3 PGK1 ENSG00000102144 5230 0.5589038 0.04228564
58 16 2.7.2.3 PGK2 ENSG00000170950 5232 0.5589038 0.04228564
59 16 2.7.2.3 PGK1 ENSG00000102144 5230 0.5589038 0.04228564
pathway ge_lfc ge_pval significant

41 Glycolysis 1.1811748 1.057940e-12 TRUE

42 Glycolysis 0.9765647 6.629340e-06 TRUE

47 Glycolysis 1.3275529 3.685888e-08 TRUE

48 Glycolysis 1.3275529 3.685888e-08 TRUE

49 Glycolysis 1.3275529 3.685888e-08 TRUE

50 Glycolysis 1.3275529 3.685888e-08 TRUE

57 Glycolysis 0.6777700 4.669467e-07 TRUE

58 Glycolysis 0.2262233 1.020720e-02 TRUE

59 Glycolysis 0.6777700 4.669467e-07 TRUE

[reached getOption("max.print") -- omitted 57 rows]

21

	1 The flux cone
	2 The k-cone
	3 Conditional transitions
	4 Stability analysis
	Protocol: k-cone analysis of HeLa cells
	Installation
	Reading the model and additional data
	Imputation of missing data
	The k-cone of HaCaT and HeLa cells
	Stability analysis
	Differential activities
	Worst-case analysis via linear programming
	Heterogeneity and co-regulation
	Comparison with gene expression data
	Gene expression analysis

	Comparison to expected differential activity

